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ABSTRACT

The widespread use of Geographic Information Sys-
tems (GIS) for modeling potential fire occurrence re-
flects the rapid growth of GIS technology and its im-
portance to fire management planning.  Despite the
proliferation of available modeling approaches, rela-
tively little is known about the factors that influence
their relative performance for a given area.  In this
paper we compared fire probability maps derived from
four models of increasing complexity: 1) knowledge-
based index model, 2) spatially weighted index model,
3) probability density function based on historic fire
data, and 4) direct fire simulation using FARSITE.  Our
results indicate that the degree to which
computationally efficient models can serve as a surro-
gate to more complex approaches depends on the de-
sired level of “accuracy” and the scale of the analysis.
Advantages and limitations of each approach are dis-
cussed in relation to these results.
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INTRODUCTION

Identifying areas that have a high probability of burn-
ing is an important component of fire management
planning (Chou 1992).  The development of spatially
explicit GIS models has greatly facilitated this process
by allowing managers to map and analyze variables
contributing to fire occurrence across large, unique
geographic units.  Despite the numerous approaches
and methodologies which have emerged for predict-

ing fire probability, information regarding their rela-
tive “accuracy” for a given area is generally lacking.
Understanding the advantages and limitations of dif-
ferent modeling approaches is important to ensure that
management objectives can be achieved with minimal
computation and cost (Keane and Long 1998).

A fundamental difficulty associated with comparing
fire probability models is the lack of a known “refer-
ence” map from which to assess “accuracy.”  Simply
put, it is impossible to know the “right” answer for
potential fire distribution across a landscape at any
given time because of the high amount of variability
of all factors influencing wildland fire.  Testing indi-
vidual models against empirical data would require
many years of observation (often defeating the utility
of the model for managers), and/or historic data sets
which are generally lacking or are statistically inad-
equate.  Moreover, historic or future fire occurrences
may not represent current patterns of fire risk in many
cases.

One alternative is to simulate fires under current land-
scape and weather conditions using spatially explicit
process models (Green et al. 1991, Clarke et al. 1994,
Coleman and Sullivan 1997).  Given a large enough
number of simulations across a landscape, areas that
are most likely to burn can be quantified and different
scenarios can be tested (Clarke et al. 1994).  This ap-
proach differs from traditional GIS-based models that
use thematic overlays of landscape variables to infer
where a fire is likely occur.  Fire probability maps de-
rived from direct fire simulation techniques can then
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serve as useful references from which to assess the
performance of simpler, more computationally efficient
GIS models and provide insight into the various fac-
tors that determine their performance.

The purpose of this research was to construct and com-
pare fire probability maps derived from three different
GIS models and a direct simulation technique.  In this
paper we provide a brief overview of selected model-
ing approaches, describe their construction for a sample
watershed, and compare the respective maps.

MODELING APPROACHES

A variety of GIS models have been developed for pre-
dicting potential fire occurrence (Chuvieco and
Congalton 1989, Chou et al. 1990, Chou et al. 1993,
Woods and Gossette 1992, Clarke et al. 1994, Salas
and Chuvieco 1994, Chuvieco and Salas 1996, Jain et
al. 1996, Maselli et al. 1996, McKelvey and Busse
1996, Gouma and Chronopoulou-Sereli 1998).  For
this study we chose to compare four modeling ap-
proaches along a gradient of increasing complexity:
1) knowledge-based index model, 2) spatially weighted
index model, 3) probability density function (pdf)
model, and 4) direct simulation.  Each model varies in
the amount of computation, parameterization time, and
relative degree of subjectivity, and thus, provides use-
ful benchmarks for comparison.  Fire probability maps
were constructed independently for the 1,241 hectare
Deadhorse Creek Watershed on the Payette National
Forest (PNF), central Idaho, USA.  The area contains
a diversity of fuels and topography making it suitable
for testing different models.

Expert-Knowledge-Based Index Model

The first method used to model fire probability in the
study area involved applying a cost function developed
from expert knowledge and published data to integrate
selected landscape variables.  The cost function used
was linear, with different weighting coefficients based
on determination of the relative effect of each vari-
able.  Variables were chosen based on their contribu-
tion to fire occurrence and data availability (Table 1).
A map was constructed for each independent variable
showing the weighted distribution of high and low risk
factors across the landscape.  A composite ignition score
(Ig) and spread risk score (Sp) were then calculated
using the following equations (refer to Table 1 for
codes):

Ig = 3r + 2a + 2e + 2s + sc + rd + sd (1)

Sg = 4f + 3s + 2a + e + c (2)

The overall fire probability (Fp) was calculated as the
product of the spread and ignition score:

Fp = (Sp)(Ig) (3)

Ignition  Score Spread Score
ridge position (r) fuel type (f)
slope (s) slope (s)
aspect (a) aspect (a)
elevation (e) elevation (e)
seral cover (sc) crown closure (c)
distance to roads (rd)
structure density (sd)

Table 1. Landscape variables used in cost function
equations for the GIS index model.

The scores were normalized between 0-1 and tabulated
on a cell by cell basis across the landscape to produce
a final map (Figure 1).
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Figure 1. Relative fire probability map produced
from the GIS index model.

Basic index models are attractive because they are
computationally efficient, many different types and
combinations of data can be used, and cost functions
can be easily modified to reflect local conditions and
expert knowledge.  Major drawbacks of index models
are that individual cell or polygon values are statisti-
cally independent of their neighbor because they are
calculated on a unit by unit basis, probability distribu-
tions are generally near-normal (rarely observed with
empirical fire occurrence data), and cost functions are
subject to expert bias.
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Spatially Weighted Index Model

Because fire is a contagion process (Chou et al. 1990,
Clarke et al. 1994), the likelihood of a given area burn-
ing depends not only on its own probability but the
probabilities of the areas that surround it (e.g., its spa-
tial neighborhood).  Thus, statistical independence
associated with index models can be a significant short-
coming when modeling fire probability.  One approach
to account for this shortcoming is to adjust individual
cell probabilities based on the statistical properties of
surrounding neighborhoods.

We developed a computationally efficient filtering al-
gorithm to modify the original index model shown in
Figure 1.  The algorithm calculates the mean prob-
ability within successively increasing n x n cell neigh-
borhoods in the direction of most likely fire spread
(e.g. highest probability).  This approximates the sta-
tistical distribution of fire spread within an n sized
neighborhood (or in essence, a fire of that size) (Fig-
ure 2a-c).  Each neighborhood was assigned a weight

corresponding to its relative fire size using fire size
distribution curves for the PNF (we used neighborhoods
between 1 and 300 ha).  The spatially weighted prob-
ability (Fpw) for each cell is calculated as follows,
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1

n

i

n

n wfpFpw �
�

�                  (4)

where fpn is the cell probability associated with an n
sized neighborhood and wn is the weight assigned to
that neighborhood (Figure 2d).

This approach offers the advantage of incorporating
spatial dependence to indexed cell probabilities, but it
comes with increased computation.  It also requires
that fire probability values in the original index model
be calculated for a large buffer (several km) outside of
the target study area to allow for the assessment of
adjacent neighborhoods and prevent “boundary” or
edge effects.  Of course, the overall results are to a
large degree dependent on the quality of the original
index map.
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Figure 2. Examples of fire probability maps created during spatial weighting.  From left to right are maps
for 1 ha (a), 100 ha (b), and 300 ha (c) neighborhoods.  Figure 2 (d) is the final spatially weighted map
formed through integration of neighborhoods 1-300 ha in size.

Fire Probability Density Function Model

Because of the possibility of expert bias regarding fire
frequency and cause, a pdf model was developed using
only empirical fire distributions for different landscape
variables.  In essence, a set of relative probability den-
sity functions (pdf) were generated for all the different
factors that influence fire (Table 2).  Two landscape
level joint probability functions were then generated,
essentially by multiplying all risk factors for a given
geographic area with set characteristics through a table
look-up.  The first set covered landscape probabilities
derived from fire perimeters (n = 439) for the Payette
National Forest.  The second set covered ignition prob-
abilities (n = 5,693), factoring in all sources of poten-
tial ignition, including proximity to roads and human

settlement, as well as natural ignitions.  These two func-
tions were multiplied to give a combined effects map
(Figure 3).  By adding all the cumulative relative prob-
abilities across a geographic area and then normaliz-
ing by that amount, one ends up with a landscape-
level probability distribution.

List of Landscape Variables
slope ignition density
aspect land type
elevation max temperature
precipitation land cover
distance to roads

Table 2. Variables used to calculate empirical igni-
tion and spread probabilities in the pdf model.
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4. Run a statistically significant number of fires out
for a specified length of time, tracking their extents
and storing this information in a database.

5. Generate a landscape-level histogram that sums the
number of times a pixel is “burned” by simulation.

6. Normalize by the total count to generate a land-
scape level fire probability map (Figure 4).

Relative Fire Probability
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Figure 3. Relative fire probability map derived from
the probability density function model.

Although probabilities derived from this approach
should give more objective, and presumably more ac-
curate results than the basic knowledge-based index
models, there are many limitations.  First, spatially
explicit fire history data is required.  Second, one must
assume that historic patterns of fire occurrence repre-
sent current fire potential.  Third, temporally dynamic
variables such as vegetation type or human factors (e.g.
roads) can be difficult to assess.  Finally, a somewhat
arbitrary decision must be made regarding the extent
of data to be used when modeling small areas.

Direct Simulation Model

The simplest and most obvious (though temporally and
computationally expensive) way of generating relative
fire probability maps is to use a fire-perimeter simula-
tor.  We used the FARSITE model, developed by Finney
(1998) for this study because of its widespread use in
the western United States.  FARSITE is a wavefront
propagation fire extent modeler that models an ellipti-
cal diffusion wavefront subject to various inhibiting
factors dictated by landscape characteristics.  The tech-
nique is as follows:

1. Build a model of the landscape using all the various
factors required by the FARSITE solver.

2. Model potential site ignition using probabilities from
the second half of the landscape-level ignition map
generated in the above study.

3. Use Monte Carlo simulation on the above ignition
probability density function to start fires across the
landscape.
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Figure 4. Relative fire probability map derived from
the direct simulation model (based on 1,202 simu-
lated fire perimeters using FARSITE).

A total of 1,500 fires were simulated for this experi-
ment, of which 1,202 fires “burned” pixels in the wa-
tershed (1,000 originated within the watershed and 202
burned from adjacent ignitions).  By allowing adja-
cent ignitions to burn into the study area, spatial neigh-
borhood influences were incorporated.  Simulation lo-
cations were generated by flooding the landscape with
thousands of potential ignition points.  A successful
ignition occurred where the predicted ignition prob-
ability of a cell exceeded the random probability of a
given point.  This pattern was supplemented with a
systematic ignition grid to ensure a minimum of two
ignitions in every 9 ha block.  Individual fire duration
was assigned randomly from regression curves devel-
oped for 1,100 nearby fires on the PNF.

Theoretically, given that the fire extent simulator cor-
rectly models fire across the landscape in question, this
method gives the “right” or best answer.  However, its
drawbacks are many.  First and foremost are the inten-
sive computational resources required to execute all
the fire simulations and the fine-scale weather and fu-
els data required.  Another problem comes with ran-
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domizing weather patterns to reflect local conditions.
In our simulation runs we assumed worst-case scenarios
for weather (mid-August), but only ran the simulations
a fixed number of days, in effect, giving a maximal
spread but short-lived fire pattern.

MODEL COMPARISON

Two methods were used to compare the respective
models.  First, Pearson cross correlation coefficients
(Zar 1984) were calculated on raw probabilities be-
tween the first three models and the direct simulation
model.  We essentially used this measure as a descrip-
tive index rather than inferential statistic since we had
a complete census (e.g., all cells had values).  Second,
categorical “risk” rankings were compared using er-
ror matrices (Jensen 1996), with the direct simulation
as the reference image.  Quantile rankings were used
to convert raw probabilities into four categorical classes
(Figure 5).  The assignment of names to these catego-
ries is somewhat arbitrary given the different underly-

ing statistical distributions of each model.  Thus, we
only report accuracy for the highest and lowest risk
classes, which are generally of most interest to fire
managers.  Producer’s accuracy is the probability that
a known class in direct simulation map is correctly
classified in the GIS map, and user’s accuracy is the
probability that a class in the GIS map correctly de-
picts a corresponding class in the reference (Jensen
1996).

RESULTS

Cross correlation coefficients and categorical “accu-
racy” results are shown in Table 3.  The raw probabili-
ties of all the GIS models were positively correlated
with the direct simulation map to some extent, but the
spatially weighted index model (r = 0.53) and knowl-
edge-based index model (r = 0.43) had considerably
stronger correlation than the pdf model (r = 0.27).  A
similar overall relationship was observed with the cat-
egorical comparisons, although relative differences in

Figure 5. Categorical fire probability maps developed from the basic index model (a), spatially weighted
index model (b), probability density function model (c), and direct simulation model (c).
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Table 3. Cross-correlation coefficients (on raw probabilities) and User’s and Producer’s accuracy for rela-
tive risk categories between the three GIS models and the direct simulation model.

accuracy between the knowledge-based index model
and spatially weighted model were small.  For
producer’s accuracy, the spatially weighted index model
correctly classified 73% of the “high” risk pixels in
the simulated map, compared to 66% and 31% for the
knowledge-based index model and pdf models respec-
tively.  For user’s accuracy, approximately 60% of the
“high risk” pixels in the spatially weighted index map

were classified as “high” risk on the simulated map,
compared to 56% and 34% for the knowledge-based
index and pdf models.  Thus, a relatively large per-
centage of ‘high” risk cells in the direct simulation
map were also classified as “high” by the index mod-
els.  However, the index models slightly over-predicted
the total number of  “high” risk pixels (Figure 5).
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DISCUSSION

The selection of an appropriate model for predicting
fire probability ultimately depends on the objectives of
the modeling effort.  However, managers must care-
fully weigh computational intensity, complexity, and
parameterization requirements against the desired level
of “accuracy” (Keane and Long 1998).  Such decisions
have, in the past, been made difficult by the lack of
quantitative data on the relative performance of differ-
ent models for a given landscape.  Often, it is simply
assumed that more complex models will produce the
most useable results, yet this notion is rarely tested.

In this study, the direct simulation model was clearly
the most complex approach in terms of computational
intensity and required input parameters (see Finney
1998).  Although we believe this technique gives the
“best” answer for potential fire distribution in the study
area, its utility for broad-scale management applica-
tions is limited by its complexity.  Moreover, the high
level of detail may not be necessary for many manage-
ment applications.  The question then becomes to what
degree can less intensive GIS models produce reason-
ably similar results?  Using the direct simulation model
as a reference to compare the GIS-based approaches is
far from perfect, but in the absence of better data it
provides a useful benchmark of computational inten-
sity and state-of-the-art modeling technology.

We did not find a correlation between complexity and
“accuracy” among the three GIS models in relation to
the direct simulation map.  The spatially weighted in-
dex model provided the best balance between efficiency
and “accuracy” for this particular watershed.  Appar-
ently, the basic index model provides a useful initial
stratification of high and low probability cell clusters
across the landscape, and the filtering expanded upon
this pattern to generate more spatially explicit prob-
ability distributions based on potential neighborhood
influences.  As expected, the overall agreement of
weighted and unweighted models increases as the level
of detail in the output maps is reduced (e.g., converted
from discrete to categorical probability).  Broad cat-
egorical rankings encompass much of the fine scale
variability in raw probability distributions between the
different models, and are generally more useful for
practical fire management planning.

The pdf model produced the most contrasting results
relative to other models.  One likely explanation is
that the empirical probability distributions derived from
historic fire perimeters were heavily skewed toward
“atypical” fire events.  Fewer than ten large fires dur-

ing two drought years comprised nearly 70% of the
total area burned.  These fires burned predominantly
in cool, mesic, subalpine habitats with little influence
from topography (unpublished data).  Although such
areas burn infrequently, they received a high weight
because of the large number of cells represented.  Fu-
ture approaches might involve standardizing scores by
fire size or frequency to reduce bias from “weather
driven” fires (Bessie and Johnson 1995, Agee 1997).
These anomalies were not encountered with the fire
ignition data because there was a considerably larger
sample size, ignition patterns in the area appear to be
more repeatable over time, and each occurrence only
counts once (one pixel).  For these reasons we believe
ignition probabilities are more accurately modeled with
this approach, at least in this landscape.

To a large degree, the utility of different modeling ap-
proaches will depend on the scale of the analysis.  For
this study area, fine-scale heterogeneity of simulated
fire perimeters contributed significantly to fire prob-
ability patterns across the landscape.  However, as the
average fire size decreases in relation to the size of the
study area, the relative importance of this variability
will also decrease (for example, variability associated
with a 10 ha fire is more important in a 1,000 ha land-
scape than a 1,000,000 ha landscape).  In addition,
computational intensity would increase exponentially
as the required number of simulations grew.  In con-
trast, larger landscapes are well suited for GIS models
because the scale of input data can be adjusted accord-
ingly and increased computation is less dramatic, es-
pecially if the objectives are broad (e.g., identify “high”
or “low” risk areas).

In summary, no single modeling approach is ideal for
all situations and no model will consistently produce
accurate results (McKenzie 1998, McKenzie et al.
1996, Keane and Lone 1998).  A logical strategy would
be to integrate the useful components of various mod-
els into hybrid meta-models (Keane et al. 1996).  For
example, the statistical properties of the simulated fires
could be used to calibrate index model cost functions
for extrapolation to larger landscapes, or to develop
algorithms that impose elliptical neighborhood-based
filters in lieu of explicit fire perimeters.  Empirical
probabilities of individual factors from pdf models can
be used for similar purposes (we utilized the ignition
component of the pdf model in the direct simulation
model and used indexed cell probabilities for spatial
weighting).  Although these efforts serve to further
remove expert bias, qualitative information from ex-
pert judgement will always play a role in coarse-scale
modeling (McKenzie 1998).
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LIMITATIONS

The flexibility that makes GIS models so useful also
makes comparisons among them difficult.  The mod-
els described in this study represent just one possible
variant of each general modeling approach.  Although
slight modifications may have produced different re-
sults in some cases, it is virtually impossible to ex-
plore all possible combinations of factors and weight-
ing functions.  Also, these results were obtained from
a single case study in one landscape, so broad gener-
alizations applied to other areas should be made with
caution.  Using models to validate other models also
has many limitations because the assumptions associ-
ated with each may compound (McKenzie et al. 1996).
Despite these circumstances, we believe that these com-
parisons can provide useful insight into the various
factors that influence different modeling results.  These
difficulties highlight the challenges involved with com-
paring and validating models used to predict highly
variable natural phenomena such as fire occurrence.

CONCLUSIONS

The degree to which computationally efficient GIS
models can serve as a surrogate to more intensive ap-
proaches such as direct simulation depends on the level
of detail or “accuracy” desired.  If the goal is to quan-
tify complex, fine-scale ecological relationships asso-
ciated with fire spread, then the detailed probability
distributions derived from direct simulation techniques
would warrant the effort (additional outputs not dis-
cussed, such as intensity and rate of spread, might be
desirable for other objectives as well).  However, if the
primary goal is to stratify large landscapes into broad
categories (e.g., “high” or “low” risk) to guide fire sup-
pression efforts or prioritize landscape fuels treatments,
then more computationally efficient GIS models are a
more logical approach.  Although the comparisons in
this study are far from comprehensive, they provide
useful insight into some of the factors that need to be
considered when selecting and evaluating a specific
model.  More research is need in this area.
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